$$
42-26
$$

IItinisuoxion. 1
ERIDOM EMOIRNANE 3
Mant Elswox 4
Komer diviloputix. 7
 9
platint mivicurnisha 11
comernalons 13
APPTBIX.
Iom Capmoity Heavy Moating Bridans. 15
Inte of Construction mine Iivor Ixidgee 16
Isbllography. 18

InPRODOOETIOT

Military bridges are portable, temporasy etructures designod to meet the load requirements of troope with their armanons, equipment and supplies, and erected to facilitate their movenents in field oporationg. In this etudy, we chall be concorned only with that sype reed in the orossing of vater obetaclos, of which the river is the principal exmple, and that depende for ite enprort atther in whole or in part on the baganoy of floate or pontons. In this category, only the hoarier type with maximan load upporting ability will be considered. Elower, it should be kept in mind that a flexible structure, capable of belag admpted to the maxima rage of loadings, is one of the principal requiromonte. The ctructusal differonce betreat the company foot bridge and the army vehicular byidge should te merely in the mimer and arrangement of the oomporeate.

Though the distinction between a tactical and a nontactical Bride is not a sharp one, so moh so that the senitactical type is also reeogised, it is further intended to limit these romaris to the tactical type of etructure where mpeed of movement, aseathy of parte, ad orection vith minimen escential equipment under battic condision are prime requiromonte.

The fleating lailoy bridge is regardod as a semitactioal type cince it requires conelderable more time to conetruct than ofther the heary ponton or the treadvay float equipmont, the latter
taking leas than half the time needed to build the sailey atructure.
It is theoretically essential that the construction of a brides follow the eeisure of the second objeotive in the bridgehead operat1on which will eliminato ground observod artillery fire from the selected site. in addition to offective mall aras fire which io prosumed to be removed upon capture of the initial objective. The carly urgent requiromente for the forward displaoment of armor and mpporting artillery in a coordinated attack beyoad the far shore, on the other hand. frequently lead in practice to the initiation of conetraction well in adrance of the oapture of the first two bridgehead objectives. Since time is of such tromondrous adrantage In conmolidating the bridgehead before onemy reserves can be assembled for a counterattack, the tectical conditions under which the bridge mary be required to be conetruoted merit particular atteation in the deaign of floating atructares.

The dovelopment of floating bridges since the advont of motorised vohicles has beoome like reconnalemance oontimuces requiremont. Prior to the adrent of the heevier loads of modern wheel and track
 matil after the axpertoneey of the Firet Vorid Var that the beary Dridev train, Model 1069, devieped during and aftor the difil Var. vere mporaciel ivy the Ponton Iridee. 23-ton, Model 1924. the molel 1869 bridge hat n normal capantity of g tone of grose lan visch the mafficient to acemodate the leadod oscort wagon. Iapid progrees of mecossity follomed an inoreasingly heavier loade vere introdiced

In an accolerated period of doviopment as shown in the chart of Leal capacity of heavy floating bridgen on pace 15 in the appondix.

Munes marnanimis

In order to ovaluate psegreseive stepe in the dovelopmont of floating equipacs and to tiee the exportome of the past to anelut in the nolution of premont probion, it is dosirable to roviow the
 featrusen and a study of how regulremonts have been mot, is is propesce to dovelop the dofinite requisiten of the present and the
 prosent ifmitations is on of the best vare to ecempe the pittuil of complaconcy, our proment progrens, like that of the pati, chouls Te conaldored a etepging etome to friture improvomonte. Tor thic macom, the cmphanis ghould te on contimene offort to overceme cur preacal mbortconinge and antleipate future irome.

4 irpace mant have the regalsed eapecity which will oxpelleatif coomplato loadiage of the volcit. itse and bype emploged in the

It chould bo ilght in wolgh an a whole to heop ismepertation Loade at a miniman, and in its componom parte to pormil eroctem

 orection is required if the ogulyag is to cerve its parpene of
peralttiag tanke and mollic heary weapons to olomely suppert the samals maves. It mould be flexible, inauriag an economy of metertal and efford through use of component parte for rafte and lighter load etsuctures eapeble of conversion to the heavient type bridge. Danaged parte shorld be easily roplaceable. the desigm chorld pernit romoval of floating baye for pascage of river traffie and debris, and shore compeotions should provide adequately for mater lovel fluctuatione.

Malntenance should be facilitated by a dusable etrooture.
The bridge mut be resistant to enom action or efrean 1sm regrlartice includiag high volocitios and dobris. Eriofly man marlsing, the desirable bridet chomid have the following charactorm 1etios:

1. atrone
2. Ulent
3. Mobslo
4. Anple
5. Rezible
6. Darable
7. Invalnerable
8. 8table

many HLexax

Hodorn penten vetaren are a covelopengt of the anotont merame of beats. rie mont Impertant of the carllest etructurpe of the sype wert the two betige of Iormes Daill over the Hellempont in 400 \%.0. whin Iaptian and Phoonioian ongineors. Mccording to the hiotorian. Ierodotus. theo etructares wore about three quarters of a milo in leacth. Drogancy wat provided by irtremen and penteconters placel alterately side by side, laghed together and anchored, exeopt

There the posteconter was ealttol to permil waterterme traffic to
 Irra bhore to shore aerese the row of beats. ymoce eaphes, with
 trarn, wad covered with bsuch and sopped with a thicir layor of carch
 moppesch and mon-tmetion, was a cemplote meeces. In the cuarme of a weck, the two istigen wese reperted to have earried withons ceellont a military forse of more than throo and a mil millea
 and malo.

Ste first historical use of ponton traing was male if Alezanior of Macedonia in the exeselmg of the Iydoopes Mror ayalagt

 gnotem wose out in hall for tranmportation oy carts. moved to the
 and uead for forrying.

Military caghociling wat surther coveleped by the Remanc, partloularly by Julem covert tho placed preat amphacio on the

 eraimet the corman frem 357 to 361 A.D., the Roman army wac
 a veodon Irame covored with a leathor nelin. Iy the severteonth

 colleptille penton of furpmila etretehed over a meodom frame vaich

 soort 160 boate of the Iromoh modol with the moceacery inalr

Thenth the aquipage arrivel toc inte to to of any real corvice

 somater the mride manfe for the pasmage of andmals vore tho pelvelpel chicate attrimated to this inpe of flout.

The first important ohage in beav floating equipage from the Civil War type was the 23-ton ponton bridge. Model 1924. A steel trestle ras used to accomodate changes in water level, which consistod of a steel latticed chrder traneom, colums of eteel tribing, teel shoes and ohain hoists for adjuting the trancon on the colvins. The Hiver and of the hince apan wan apported by a hinge elll sumponded ifancvernely between the firat aid socond boats instead of direotiy on the pirst boat as in the old modol. The model provided a stronger irestio and distributed the lead on the hinge mpan raft. The sise of balk, ohesw, silis, and pontons vere increesed to take the heavier loade. Thrount the use of afed metal helk fastomere which ropleced the rope lachinge on the formor model, a conalderable ament of contimoun bean actlon val introduced so that an mary as five pontons aseioted in providing reaganey.

In 1938, the 25-ton ponton wat clopted. In this modol, the meoden ponton veighiag apprezimatoly 4000 pound wan repleced by the Luminu sppe, followod later by a atepl one. oulne to the nee of the itchtor motal in the airplare indartry. the elmimem porton volyte 2600 peande and the ateol type 4200 pounde. The abillty of a licht motal to roduce voicit vas clearis domonotrated in thie mode2. The oteal type wac too heary to be lifted and carrited about Mosilly by hap though this mane could be ueod. A three-boat hinge elll gatt vas uged to recoive the loed coming on to the flouting meotion of the veldge from the treatio. onle bridee
oontinued as the standard ponton type until repimoomont oy the $\begin{aligned} & \text { It }\end{aligned}$ Driage after Morla Mar II.

A distinct change in sype of equipment occerred in 1942 vith the introduction of the steel treadway bildep dealged to furaish a rapld mane of etrean oronalmg for vohlcles of the armored force. It conalsts of pnownite fleats expporting a pais of eteel ireadvays stgady joined ond to and to form a continuone ot of tracke. Then shallow tanks of shoal proveat the nee of 1 oate, the ateol troadmays can be mpported on cy-tom trestien. the 1 I modol wat apper seded in 1943 by the M 2 model with a wider track, orceter elear yldth betweon outer onrit and rubber hoate with increaced vayanoy.

In aldition to tranoperting the bride equipmont, bride construction treokn are oquipped with a hylranile orane which can 215 twe troctray' from the truck and place then in peetston on a Reat in a eingle operation. zuree loagthe of ingie frack or two lengthe of doable track my be ralacd into poaltion after firut unloalling asd then compoting the treaduar seetlome.

Inssons man mit mirn RIVMR czossimo

Dased on the number of personnel encaged and the quantity of equipmont $u t i l i z e d$, the assanit crossing of the 耻ing Biver vas the largest military operation of this type in history. study of an undertaking of this magitude and inportance should reveal moh information of value in the future development of heavy floating equipage.

Porhaps the most igaificant lesson of the operation is the influence of the current veloeity on the capacity of the bridge. A atuay of the characteristica of the nine flow showed that during fleods the river has velocitios as high as 12 feet per socond in the upper reach and eight to nize feet per second in the lower reach below Vannheim except in the gorge ectiong. since currents over apren feet per second sericusily reduce the capacity of flouting equipage, this condition created an important problom. In particular. $1 t$ was planned to reinforce the ay-ton ponton bridee to carry clase Ho loads but the daming effect of pontons, in addition to their mhortage, led to reinforement with rabber fleats for clase 36 capacity. Test chowed hat bow adapters wore heipinl in atreame Inning the bluat onde of pontong and they were manafactured and nsed on the rystream bown. the noed for speodal onchorage and Boom was also domonstrated.

The value of arnor and heary veapons in the close enpport of the ascanit waves led time and again to the construction of bridges wisile the enemy atill had observation and omall arme and artillery P15e on the brides and assembly sites. From experiences on the

Mine, as vell at other river crossing operatione mah a condiblen matt be considered the rule rather then the exception.

The M 2 troadmay bride at Hilohplats wan completed on $1 \& 2_{0}$ wth 21gh artilley fire till fallime after delare canead by the collision of three INM' with the bridge and the dostraction of seven floats by artillery fire. Aseisting the racinoorw mader thone conditlons, however, vere air cover, ensialrerift and gomind target artillory, antitent gane, tank doetroyers, river patrols With danolition charges, encuiligh battaries, angis guasmiorw. barrag ballonne and an undorwater isetenine dovioe.
the treadway is porbape elighty more Falnerable than the heavy ponton srpe. Since the balt and ohoen of the latter float. their equipment oan be ealvaged and the anmed pontone repleoed. On the
 the mabor flouti and separation of that seetson of bride. Inis Ansteluaty of the irmaray. however. It more shan mate ing by the cen of sheat traneportation and the mpeed of ereetion whioh mado is the best tactical brily usod in larepe. mble I. pars 16. 11ste
 In foes par hour of coveral isidgee of ach trpe.

In conern. the lende sequired to De mored orer the mine taptical bridges reachad or exected the oupacity of the explpment

 speede vith a ponton frwonent redened to four inobon and a fow malt
boing erecked. Melly reinforeed with metal poitong, this bridet is capable of corrying only a safe load of 30 tome with rontrictod novemont in a etrean velocity of 7 feet per second. Though the deok can aceomodete the present heary tank, it was found desirn able to lay wear troadn for protection againat the steal tracke. It mas necessary to modity the M 2 treadray to pans the M 26 tank ty mpreading the steel treadwaye 24 inches further apart with I-bean opecers to provide melght imeh clearase on anch ide for the tanke total tradk vidth of 238 lachen. A plywood treadvay ladd between the steel treadrayt accommodated narrower rohleles.

PRESHIZ DEVEYOMAHAS

In 1945 , the 44 bridge vas adopted which repleced the 25 -ton pontor model, but does not abody all of the desirable characteriatice of the treadway. The deck is formod of hollov alundman alloy decte Kalk which serwo as both stringors and llooring. The balk being mogrant presesves the 110tation charaoterlstis of the woodon type In addikion se proplding imereaned strongth. the balk ean be used se floats and dockiag for a foot bridge, or for bridetne ohert ditah
 knocked out.
 pontens of almaimun alloy factence stern to stern to foría mole. gonton and apaced 25 foct outer to conter. For aj-ton londs only the hall-boat meed be used, an adAltlonal hall-boat belng addod Inter whon the need for increased oapacity devoleps. In a inke maner. damaged pontons may be readily roplaced by balf-boats. Ao
a reault of nodel stadien of streamilning requirements, the ponton meste" in a high velecity ourrent so well that while the mater may be highpr than the ganvale, nose entera the boat. Improved etreanlining has aleo minimized the problem of debrie in high volocitien. Whth currente of 10 feet per second, or greater, a 100 pervent seinforoed byidge will pasi lobris bozeath the pontons.

Contimene deck connections are uned when ponsible befreen ehore pentons and abutmonts, but whern high banke or variations in river atage requife them, trentle bay are avallable.

The M 4 bridge can be nillised an a floating or fixed bridge. a comblation of both, er at raft. In a five foot per second correat with a 20 -balk dovit moasuring 15 foet in width, it will carry a clase 60-ton 10ad. The capacity can be inoreaced to 100 same throan reinforemant with the ame stream volenty, and to

Under favorable condisites, the floating bridge 14 man beon arocted from tranuportation at the rate of about 125 fent per hour vhen no trestlen wore nod. Dader vinilar sonditions, the treadray veicue can be conatructed at the rate of about 170 feot yop hour.

Pnomatie floate with reddie adaptors doeigmed for use vith elumimen deak Melk are ntilisod in the $M 4$ bridge for oltes on coft or sumpl fround vhere adequate support for trentles does sot culst, and on long shelfing boachos where pontons may bo cromiod.

comornsiams

In the floating bridge M 4, may ohengen is doalga have Improved the operatimg charmoteristice found deficiont in the equipege of Morid Var II. The progreas mede to date is indicetive of farther macceastul dovolopments at a rate which shoule lecop well ahoad of future reanaremonte.

Iovioving our brider requiremontin, we mat have atiructure that will carry the present division loads and any formeable sather ones. Vhile tho $M 4$ bridep has adoquate eapacity tor proucat neods, the way for inereased loudine is open throuch the net of a threomseotion ponton with a muaro-ond centor section to which the outor half-boats mar be fastenod.

The accoloritel advances in metallure durimg the war and the cmormonsiy inoreased productive capacity of alumiman and ite allogs have corved and chould coustine to provide incroased otrourth of

 per llacer foot per tim capodity it 10.0 for the formor and 9.2 for te Intter.
te provimeily pointed out, the treadiva ispe construeted with
 pruacmi briages tue to mace requiremente for tranoportation and 14cher melght. simele malt truek tranioportation aroh ao is usel for the treadway type if deairable over the trailer form of frankportition uned for the $n 4$ pontonm. Lighter welght of parts and loat of them make the troadvay bridet eanier to conatruet than the
M. The elimination of ohess as need in the 25-ton ponton bxidyo 1e a progresnive stop in aimplification, and further pregress may be expected.

Fexibility has been impreved considerably in the $M 4$ type which permits increased load oapacity by additions to the bridge in the water of boet sectione. Through the addition of deok balk at moeded, the required deok mpece to ascomodate vehicies of varying vidth may be readily obtained.

It is belleved that the m 4 type han rearited in improved darabillty. The metal deok hat renoved the need of fleor treade required with the 25-tom troe.

Dee to the once of removal of boat sections and the bloynney of pentone and balk, the 14 inpe is lose valnorable to enemy action. The use of motal in place of wood or rebber hat docroated its wanksone to Incondiary attack.

Etreanliaing hat produced a bridge in the 14 type which is more otable, particulariy in repid currente, than any type mhich we have provioualy employed.

Wuch development and seeting are etill neoded, inciuding une maler cold and tropical conditions, and ground and aiz transpertabllity stodies. The geal is an all-purpose type of structare uninedrigg the Inherent alvantages of the best type of single perpose mriag mater all foremesio oondition.

OHatum		$\begin{aligned} & \text { niver } \\ & (\text { Feel } \end{aligned}$			21805
I.llach	40	1150	19	47	Dolayod by work on far approach and placias spaade.
Mesel	36	1230	$223 / 4$	54	Moat rolaforted. Plereed ateol planidng need for treads. Sow adeptere on up atrom bow.
Krimp	30	969	$301 / 2$	32	
zondeminter	-	1170	18.2	64	
Orser	40	1080	54	20	

granmax 3REM

Milohgiats	140	2260	$563 / 4$	13	```Soven floats knooked ont my artilloyy 1ire. Incht artillery 12me still falling whon comploted.```
Mehyen	40	1110	26	43	144 foet of bexace contreyed in astillery fise duriac comefraction.
Vallach	40	1150	9	228	Internittant artillezy Pire intoriored with conetrection.
Vesel	40	1284	13	99	
Mecina	40	1030	$331 / 2$	32	Mearly contlmucec heavy artillery ebollime.
Somat	40	1176	$371 / 2$	31	
zemerset	40	1308	11.8	110	
Fiomatruea	40	1368	12	114	

Horraram	6incs	$\begin{aligned} & \text { EME } \\ & (F 00 t) \end{aligned}$	Find OF comsyivoz 100 (Enexy)	\qquad	Eincil
Malys	40	1696	24	79	
Oppeathein	40	972	$111 / 2$	85	
Uppeateia	40	1116	20	56	
Soppasi	40	2044	$251 / 2$	41	Faptd garront.
8t. Inas	no	825	36	23	Mapld Ourrent.

2DH300nMis

Ang Irtengion Courses, Ipeeial Toxt Mo. 108. Mrimed and Hoating Brldren". The Inglacer school. 1939, pace 135.
 The Military Ingincer, Fovember 1946, pact 485; Deoenber 1946, pages 530. 536; Jamary 1947. page 10.

Magclopaedia Dritannea, Bridring, Military. Mistory of Ponton Eatyons, 1942 2dition, Folune 4. pace 40.

71 5-10. 9 80p 1940, par. 89.

In 5-10, $28 \operatorname{Jan}$ 1944, par. 314. 316, 317. 342-344. 346, 347. 349. 7n 5-35. a4 Mar 1944. par. 87.
 Prer greader.". 30 dute 1945, 15. 16, 46, 47, 53.

Epencer. Dr. I. D.. Mabuy Paton Ixtape in 1846". The Military Ingineer, Janemry 19he. pages 24-27.

2 Ime. 61. 7012945.
 Mareh 1946; page 99.

Indmeer oporationen. Introduction: pace: 7.9. 10. 30.
35. 40.42.

5m 5-272, 9 Mas 1944.

